Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Leukoc Biol ; 115(3): 420-434, 2024 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-37939820

RESUMO

Cystic fibrosis is a life-shortening genetic disorder, caused by mutations in the gene that encodes cystic fibrosis transmembrane-conductance regulator, a cAMP-activated chloride and bicarbonate channel. Persistent neutrophilic inflammation is a major contributor to cystic fibrosis lung disease. However, how cystic fibrosis transmembrane-conductance regulator loss of function leads to excessive inflammation and its clinical sequela remains incompletely understood. In this study, neutrophils from F508del-CF and healthy control participants were compared for gene transcription. We found that cystic fibrosis circulating neutrophils have a prematurely primed basal state with significantly higher scores for activation, chemotaxis, immune signaling, and pattern recognition. Such an irregular basal state appeared not related to the blood environment and was also observed in neutrophils derived from the F508del-CF HL-60 cell line, indicating an innate characteristic of the phenotype. Lipopolysaccharides (LPS) stimulation drastically shifted the transcriptional landscape of healthy control neutrophils toward a robust immune response; however, cystic fibrosis neutrophils were immune-exhausted, reflected by abnormal cell aging and fate determination in gene programming. Moreover, cystic fibrosis sputum neutrophils differed significantly from cystic fibrosis circulating neutrophils in gene transcription with increased inflammatory response, aging, apoptosis, and necrosis, suggesting additional environmental influences on the neutrophils in cystic fibrosis lungs. Taken together, our data indicate that loss of cystic fibrosis transmembrane-conductance regulator function has intrinsic effects on neutrophil immune programming, leading to premature priming and dysregulated response to challenge.


Assuntos
Fibrose Cística , Humanos , Fibrose Cística/genética , Neutrófilos , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Imunidade , Inflamação , Mutação
2.
Front Immunol ; 14: 1242381, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38035088

RESUMO

Cystic fibrosis (CF) is an autosomal recessive genetic disorder caused by mutations in the CF Transmembrane-conductance Regulator (CFTR) gene. The most severe pathologies of CF occur in the lung, manifesting as chronic bacterial infection, persistent neutrophilic inflammation, and mucopurulent airway obstruction. Despite increasing knowledge of the CF primary defect and the resulting clinical sequelae, the relationship between the CFTR loss of function and the neutrophilic inflammation remains incompletely understood. Here, we report that loss of CFTR function in macrophages causes extended lung inflammation. After intratracheal inoculation with Pseudomonas aeruginosa, mice with a macrophage-specific Cftr-knockout (Mac-CF) were able to mount an effective host defense to clear the bacterial infection. However, three days post-inoculation, Mac-CF lungs demonstrated significantly more neutrophil infiltration and higher levels of inflammatory cytokines, suggesting that Mac-CF mice had a slower resolution of inflammation. Single-cell RNA sequencing revealed that absence of CFTR in the macrophages altered the cell transcriptional program, affecting the cell inflammatory and immune responses, antioxidant system, and mitochondrial respiration. Thus, loss of CFTR function in macrophages influences cell homeostasis, leading to a dysregulated cellular response to infection that may exacerbate CF lung disease.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Fibrose Cística , Camundongos , Animais , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística/complicações , Pulmão/patologia , Macrófagos/patologia , Inflamação/patologia
3.
Cells ; 12(12)2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37371025

RESUMO

Cystic fibrosis (CF) is a monogenic recessive genetic disorder caused by mutations in the CF Transmembrane-conductance Regulator gene (CFTR). Remarkable progress in basic research has led to the discovery of highly effective CFTR modulators. Now ~90% of CF patients are treatable. However, these modulator therapies are not curative and do not cover the full spectrum of CFTR mutations. Thus, there is a continued need to develop a complete and durable therapy that can treat all CF patients once and for all. As CF is a genetic disease, the ultimate therapy would be in-situ repair of the genetic lesions in the genome. Within the past few years, new technologies, such as CRISPR/Cas gene editing, have emerged as an appealing platform to revise the genome, ushering in a new era of genetic therapy. This review provided an update on this rapidly evolving field and the status of adapting the technology for CF therapy.


Assuntos
Fibrose Cística , Humanos , Fibrose Cística/genética , Fibrose Cística/terapia , Fibrose Cística/patologia , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Edição de Genes , Terapia Genética , Medicina de Precisão
4.
J Leukoc Biol ; 113(6): 604-614, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36976023

RESUMO

Cystic fibrosis is a life-threatening genetic disorder caused by mutations in the CFTR chloride channel. Clinically, over 90% of patients with cystic fibrosis succumb to pulmonary complications precipitated by chronic bacterial infections, predominantly by Pseudomonas aeruginosa and Staphylococcus aureus. Despite the well-characterized gene defect and clearly defined clinical sequelae of cystic fibrosis, the critical link between the chloride channel defect and the host defense failure against these specific pathogens has not been established. Previous research from us and others has uncovered that neutrophils from patients with cystic fibrosis are defective in phagosomal production of hypochlorous acid, a potent microbicidal oxidant. Here we report our studies to investigate if this defect in hypochlorous acid production provides P. aeruginosa and S. aureus with a selective advantage in cystic fibrosis lungs. A polymicrobial mixture of cystic fibrosis pathogens (P. aeruginosa and S. aureus) and non-cystic fibrosis pathogens (Streptococcus pneumoniae, Klebsiella pneumoniae, and Escherichia coli) was exposed to varied concentrations of hypochlorous acid. The cystic fibrosis pathogens withstood higher concentrations of hypochlorous acid than did the non-cystic fibrosis pathogens. Neutrophils derived from F508del-CFTR HL-60 cells killed P. aeruginosa less efficiently than did the wild-type counterparts in the polymicrobial setting. After intratracheal challenge in wild-type and cystic fibrosis mice, the cystic fibrosis pathogens outcompeted the non-cystic fibrosis pathogens and exhibited greater survival in the cystic fibrosis lungs. Taken together, these data indicate that reduced hypochlorous acid production due to the absence of CFTR function creates an environment in cystic fibrosis neutrophils that provides a survival advantage to specific microbes-namely, S. aureus and P. aeruginosa-in the cystic fibrosis lungs.


Assuntos
Fibrose Cística , Infecções por Pseudomonas , Animais , Camundongos , Neutrófilos/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Ácido Hipocloroso/metabolismo , Staphylococcus aureus/metabolismo , Fibrose Cística/patologia , Pulmão/patologia , Fibrose , Pseudomonas aeruginosa , Infecções por Pseudomonas/microbiologia
5.
medRxiv ; 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36747678

RESUMO

Cystic fibrosis (CF) is a life-shortening genetic disorder, caused by mutations in the gene that encodes Cystic Fibrosis Transmembrane-conductance Regulator (CFTR), a cAMP-activated chloride and bicarbonate channel. Although multiple organ systems can be affected, CF lung disease claims the most morbidity and mortality due to chronic bacterial infection, persistent neutrophilic inflammation, and mucopurulent airway obstruction. Despite the clear predominance of neutrophils in these pathologies, how CFTR loss-of-function affects these cells per se remains incompletely understood. Here, we report the profiling and comparing of transcriptional signatures of peripheral blood neutrophils from CF participants and healthy human controls (HC) at the single-cell level. Circulating CF neutrophils had an aberrant basal state with significantly higher scores for activation, chemotaxis, immune signaling, and pattern recognition, suggesting that CF neutrophils in blood are prematurely primed. Such an abnormal basal state was also observed in neutrophils derived from an F508del-CF HL-60 cell line, indicating an innate characteristic of the phenotype. LPS stimulation drastically shifted the transcriptional landscape of HC circulating neutrophils towards a robust immune response, however, CF neutrophils were immune-exhausted. Moreover, CF blood neutrophils differed significantly from CF sputum neutrophils in gene programming with respect to neutrophil activation and aging, as well as inflammatory signaling, highlighting additional environmental influences on the neutrophils in CF lungs. Taken together, loss of CFTR function has intrinsic effects on neutrophil immune programming that leads to premature priming and dysregulated response to challenge.

6.
Gene ; 852: 147061, 2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36423775

RESUMO

Kynurenic acid (KYNA), an unavoidable tryptophan metabolite during fermentation is naturally blended with alcohol in all alcoholic beverages. Thus, alcohol drinking inevitably results in co-intake of KYNA. Effects of alcohol or KYNA on human health have been widely studied. However, the combined effects of both remain unknown. Here we report that alcohol and KYNA have a synergistic impact of on global gene expression, especially the gene sets related to tryptophan metabolism and cell signaling. Adult mice were exposed to alcohol (ethanol) and/or KYNA daily for a week. Transcriptomes of the brain, kidney and liver were profiled via bulk RNA sequencing. Results indicate that while KYNA alone largely promotes, and alcohol alone mostly inhibits gene expression, alcohol and KYNA co-administration has a stronger inhibition of global gene expression. Tryptophan metabolism is severely skewed towards kynurenine pathway by decreasing tryptophan hydroxylase 2 and increasing tryptophan dioxygenase. Quantification of tryptophan metabolic enzymes corroborates the transcriptional changes of these enzymes. Furthermore, the co-administration greatly enhances the GnRH signaling pathway. This research provides critical data to better understand the effects of alcohol and KYNA in mix on human health.


Assuntos
Ácido Cinurênico , Triptofano , Adulto , Camundongos , Animais , Humanos , Triptofano/metabolismo , Ácido Cinurênico/metabolismo , Etanol/farmacologia , Cinurenina/metabolismo , Transdução de Sinais
7.
Commun Biol ; 5(1): 1130, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36289287

RESUMO

Cystic fibrosis (CF) is a life-threatening genetic disorder, caused by mutations in the CF transmembrane-conductance regulator gene (cftr) that encodes CFTR, a cAMP-activated chloride and bicarbonate channel. Clinically, CF lung disease dominates the adult patient population. However, its gastrointestinal illness claims the early morbidity and mortality, manifesting as intestinal dysbiosis, inflammation and obstruction. As CF is widely accepted as a disease of epithelial dysfunction, it is unknown whether CFTR loss-of-function in immune cells contributes to these clinical outcomes. Using cftr genetic knockout and bone marrow transplantation mouse models, we performed 16S rRNA gene sequencing of the intestinal microbes. Here we show that cftr deletion in both epithelial and immune cells collectively influence the intestinal microbiota. However, the immune defect is a major factor determining the dysbiosis in the small intestine, while the epithelial defect largely influences that in the large intestine. This finding revises the current concept by suggesting that CF epithelial defect and immune defect play differential roles in CF intestinal disease.


Assuntos
Fibrose Cística , Microbioma Gastrointestinal , Humanos , Camundongos , Animais , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Disbiose/genética , RNA Ribossômico 16S/genética , Cloretos , Bicarbonatos , Fibrose Cística/genética
8.
Neural Netw ; 153: 179-191, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35728337

RESUMO

In this paper, we introduce a new type of interpolation operators by using Lagrange polynomials of degree r, which can be regarded as feedforward neural networks with four layers. The approximation rate of the new operators can be estimated by the (r+1)-th modulus of smoothness of the objective functions. By adding some smooth assumptions on the activation function, we establish two important inequalities of the derivatives of the operators. With these two inequalities, by using the K-functional and Berens-Lorentz lemma in approximation theory, we establish the converse theorem of approximation. We also give the Voronovskaja-type asymptotic estimation of the operators for smooth functions. Furthermore, we extend our operators to the multivariate case, and investigate their approximation properties for multivariate functions. Finally, some numerical examples are given to demonstrate the validity of the theoretical results obtained and the superiority of the operators.


Assuntos
Algoritmos , Redes Neurais de Computação
9.
Front Immunol ; 13: 876794, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35432325

RESUMO

[This corrects the article DOI: 10.3389/fimmu.2020.00053.].

10.
Blood ; 139(17): 2622-2631, 2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-35213685

RESUMO

Polymorphonuclear neutrophils (PMNs) figure prominently in host defense against infection and in noninfectious inflammation. Mobilized early in an inflammatory response, PMNs mediate immediate cellular defense against microbes and orchestrate events that culminate in cessation of inflammation and restoration of homeostasis. Failure to terminate the inflammatory response and its causes can fuel exuberant inflammation characteristic of many human diseases, including cystic fibrosis (CF), an autosomal recessive genetic disease caused by mutations in the CF transmembrane conductance regulator. CF affects multiple end organs, with persistent bacterial infection and chronic neutrophilic inflammation in airways predominating the clinical picture. To match the diverse microbial challenges that they may encounter, PMNs possess a variety of antimicrobial systems to slow or kill invading microorganisms confined in their phagosomes. Prominent among PMN defense systems is their ability to generate hypochlorous acid, a potent microbicide, by reacting oxidants generated by the NADPH oxidase with myeloperoxidase (MPO) released from azurophilic granules in the presence of chloride (Cl-). Products of the MPO-H2O2-Cl system oxidize susceptible biomolecules and support robust antimicrobial action against many, but not all, potential human pathogens. Underscoring that the MPO-H2O2-Cl system is integral to optimal host defense and proper regulation of inflammation, individuals with defects in any component of this system, as seen in chronic granulomatous disease or MPO deficiency, incur increased rates or severity of infection and signs of dysregulated inflammatory responses. We focus attention in this review on the molecular basis for and the clinical consequences of defects in the MPO-H2O2-Cl system because of the compromised Cl transport seen in CF. We will discuss first how the MPO-H2O2-Cl system in healthy PMNs participates in host defense and resolution of inflammation and then review how a defective MPO-H2O2-Cl system contributes to the increased susceptibility to infection and dysregulated inflammation associated with the clinical manifestations of CF.


Assuntos
Fibrose Cística , Transtornos Leucocíticos , Cloretos , Humanos , Peróxido de Hidrogênio , Ácido Hipocloroso , Inflamação , Neutrófilos/microbiologia , Peroxidase
11.
J Leukoc Biol ; 108(6): 1777-1785, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32531843

RESUMO

Persistent neutrophilic inflammation is a hallmark of cystic fibrosis (CF). However, the mechanisms underlying this outstanding pathology remain incompletely understood. Here, we report that CFTR in myeloid immune cells plays a pivotal role in control of neutrophilic inflammation. Myeloid CFTR-Knockout (Mye-Cftr-/-) mice and congenic wild-type (WT) mice were challenged peritoneally with zymosan particles at different doses, creating aseptic peritonitis with varied severity. A high-dose challenge resulted in significantly higher mortality in Mye-Cftr-/- mice, indicating an intrinsic defect in host control of inflammation in mice whose myeloid cells lack CF. The low-dose challenge demonstrated an impaired resolution of inflammation in Mye-Cftr-/- mice, reflected by a significant overproduction of proinflammatory cytokines, including neutrophil chemokines MIP-2 and KC, and sustained accumulation of neutrophils. Tracing neutrophil mobilization in vivo demonstrated that myeloid CF mice recruited significantly more neutrophils than did WT mice. Pulmonary challenge with zymosan elicited exuberant inflammation in the lung and recapitulated the findings from peritoneal challenge. To determine the major type of cell that was primarily responsible for the over-recruitment of neutrophils, we purified and cultured ex vivo zymosan-elicited peritoneal neutrophils and macrophages. The CF neutrophils produced significantly more MIP-2 than did the WT counterparts, and peripheral blood neutrophils isolated from myeloid CF mice also produced significantly more MIP-2 after zymosan stimulation in vitro. These data altogether suggest that CFTR dysfunction in myeloid immune cells, especially neutrophils, leads to hyperinflammation and excessive neutrophil mobilization in the absence of infection. Thus, dysregulated inflammation secondary to abnormal or absent CFTR in myeloid cells may underlie the clinically observed neutrophilic inflammation in CF.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/deficiência , Fibrose Cística/imunologia , Macrófagos Peritoneais/imunologia , Neutrófilos/imunologia , Animais , Fibrose Cística/patologia , Regulador de Condutância Transmembrana em Fibrose Cística/imunologia , Inflamação/induzido quimicamente , Inflamação/genética , Inflamação/imunologia , Inflamação/patologia , Mutação com Perda de Função , Macrófagos Peritoneais/patologia , Camundongos , Camundongos Mutantes , Neutrófilos/patologia , Zimosan/toxicidade
12.
Front Immunol ; 11: 53, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32117233

RESUMO

Alcohol differentially affects human health, depending on the pattern of exposure. Moderate intake provides beneficial mood modulation and an anti-inflammatory effect, while excessive consumption leads to immunosuppression and various alcohol use disorders. The mechanism underlying this bi-phasic action mode of alcohol has not been clearly defined. Our previous publication demonstrated that ethanol, in the absence of glucocorticoids (GCs), induces expression of Glucocorticoid-Induced Leucine Zipper (GILZ), a key molecule that transduces GC anti-inflammatory effect through a non-canonical activation of glucocorticoid receptor (1). Here we report that similar short-chain alcohols, such as ethanol, propanol and isopropanol, share the same property of upregulating GILZ gene expression, and blunt cell inflammatory response in vitro. When mice were exposed to these alcohols, GILZ gene expression in immune cells was augmented in a dose-dependent manner. Monocytes and neutrophils were most affected. The short-chain alcohols suppressed host inflammatory response to lipopolysaccharide (LPS) and significantly reduced LPS-induced mortality. Intriguingly, propanol and isopropanol displayed more potent protection than ethanol at the same dose. Inhibition of ethanol metabolism enhanced the ethanol protective effect, suggesting that it is ethanol, not its derivatives or metabolites, that induces immune suppression. Taken together, short-chain alcohols per se upregulate GILZ gene expression and provide immune protection against LPS toxicity, suggesting a potential measure to counter LPS septic shock in a resource limited situation.


Assuntos
Álcoois/farmacologia , Choque Séptico/imunologia , Fatores de Transcrição/biossíntese , Animais , Células Cultivadas , Citocinas/imunologia , Feminino , Expressão Gênica/efeitos dos fármacos , Glucocorticoides/metabolismo , Humanos , Imunidade/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/efeitos dos fármacos , Choque Séptico/induzido quimicamente , Choque Séptico/tratamento farmacológico , Fatores de Transcrição/genética , Fatores de Transcrição/imunologia , Regulação para Cima/efeitos dos fármacos
13.
Gene ; 737: 144434, 2020 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-32018015

RESUMO

Excessive alcohol (ethanol) use has long been known to affect human health negatively. However, the underlying molecular basis is incompletely understood. Moreover, consumption of alcohol is often mixed with kynurenic acid (KYNA), an abundant tryptophan metabolite produced during fermentation. The combined effect of ethanol and KYNA on host gene expression has not been investigated. The current study used mice as the model to interrogate the impact of ethanol and/or KYNA on global gene transcription. Adult male mice were administered with 2 g/kg ethanol and/or 0.1 mg/kg KYNA by gavage once a day for a week. Three organs: brain, kidney, and liver were collected and their total RNAs extracted for transcriptome sequencing and quantitative real-time PCR. Gene ontology, Kyoto encyclopedia of genes, and genomes pathway analyses revealed that alcohol affects the three organs differentially. Furthermore, the gene expression profile from alcohol and KYNA co-administration was significantly different from that of alcohol or KYNA administration alone. Strikingly, Indolamine 2,3-dioxygenase 1, a rate-limiting enzyme in tryptophan metabolism, was significantly increased in the brain after a combined exposure of alcohol and KYNA, suggesting that Trp metabolism was skewed towards the kynurenine pathway in the brain. Our systemic analysis provides new insights into the mechanism whereby alcohol and KYNA affects organ functions.


Assuntos
Bebidas Alcoólicas/análise , Etanol/farmacologia , Ácido Cinurênico/farmacologia , Transcrição Gênica/efeitos dos fármacos , Animais , Encéfalo/metabolismo , Ácido Cinurênico/metabolismo , Masculino , Camundongos
14.
Mol Ther Nucleic Acids ; 16: 73-81, 2019 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-30852378

RESUMO

Cystic fibrosis (CF) is a lethal autosomal recessive disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Nuclease-mediated precise gene editing (PGE) represents a promising therapy for CF, for which an efficient strategy that is free of viral vector, drug selection, and reporter enrichment (VDR free) is desirable. Here we compared different transfection methods (lipofectamine versus electroporation) and formats (plasmid DNA versus ribonucleoprotein) in delivering the CRISPR/Cas9 elements along with single-stranded oligodeoxynucleotides (ssODNs) to clinically relevant cells targeting major CFTR mutation loci. We demonstrate that, among different combinations, electroporation of CRISPR/Cas9 and guide RNA (gRNA) ribonucleoprotein (Cas9 RNP) is the most effective one. By using this VDR-free method, 4.8% to 27.2% efficiencies were achieved in creating dF508, G542X, and G551D mutations in a wild-type induced pluripotent stem cell (iPSC) line. When it is applied to a patient-derived iPSC line carrying the dF508 mutation, a greater than 20% precise correction rate was achieved. As expected, genetic correction leads to the restoration of CFTR function in iPSC-derived proximal lung organoids, as well as in a patient-derived adenocarcinoma cell line CFPAC-1. The present work demonstrates the feasibility of gene editing-based therapeutics toward monogenic diseases such as CF.

15.
J Cyst Fibros ; 18(1): 44-53, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30670178

RESUMO

Cystic fibrosis (CF), one of the most common genetic disorders, is caused by mutations in the CF transmembrane conductance regulator (CFTR) gene. In spite of significant improvement in patient life expectancy, the disease remains lethal and incurable. Clinically, CF lung disease claims the most morbidity and mortality, characterized by chronic bacterial infection, persistent neutrophilic inflammation, and purulent small airway obstruction. Although all these manifestations are highly associated with neutrophils, the actual role of this phagocyte in the disease pathogenesis has not been fully appreciated. One of the major obstacles impeding such progress is the lack of CF neutrophil cell lines. Taking advantage of the new CRISPR/Cas9 gene-editing technology, we have generated a homozygous ΔF508-CF promyelocytic cell line from HL-60 cells, from which unlimited CF neutrophil cells can be differentiated. The derived cells showed defective CFTR presentation, deficient phagosomal hypochlorous acid (HOCl) production, and compromised microbial killing. Such a phenotype recapitulates that of primary neutrophils from CF patients. Thus, the established human CF promyelocytic cell line should be a useful tool for future CF basic research and drug screening.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística/genética , DNA/genética , Células Precursoras de Granulócitos/patologia , Terapia de Alvo Molecular/métodos , Mutação , Apoptose , Linhagem Celular , Fibrose Cística/tratamento farmacológico , Fibrose Cística/patologia , Análise Mutacional de DNA , Avaliação Pré-Clínica de Medicamentos/métodos , Células Precursoras de Granulócitos/metabolismo , Humanos , Fenótipo
16.
Front Immunol ; 9: 429, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29593714

RESUMO

Using the CRISPR/Cas9 gene-editing technology, we recently produced a number of rabbits with mutations in immune function genes, including FOXN1, PRKDC, RAG1, RAG2, and IL2RG. Seven founder knockout rabbits (F0) and three male IL2RG null (-/y) F1 animals demonstrated severe combined immunodeficiency (SCID), characterized by absence or pronounced hypoplasia of the thymus and splenic white pulp, and absence of immature and mature T and B-lymphocytes in peripheral blood. Complete blood count analysis showed severe leukopenia and lymphocytopenia accompanied by severe neutrophilia. Without prophylactic antibiotics, the SCID rabbits universally succumbed to lung infections following weaning. Pathology examination revealed severe heterophilic bronchopneumonia caused by Bordetella bronchiseptica in several animals, but a consistent feature of lung lesions in all animals was a severe interstitial pneumonia caused by Pneumocystis oryctolagi, as confirmed by histological examination and PCR analysis of Pneumocystis genes. The results of this study suggest that these SCID rabbits could serve as a useful model for human SCID to investigate the disease pathogenesis and the development of gene and drug therapies.


Assuntos
Linfócitos B/fisiologia , Infecções por Bordetella/genética , Bordetella bronchiseptica/fisiologia , Subunidade gama Comum de Receptores de Interleucina/genética , Pulmão/patologia , Pneumonia por Pneumocystis/microbiologia , Imunodeficiência Combinada Severa/microbiologia , Linfócitos T/fisiologia , Animais , Animais Geneticamente Modificados , Infecções por Bordetella/microbiologia , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Técnicas de Inativação de Genes , Humanos , Transtornos Leucocíticos/congênito , Transtornos Leucocíticos/genética , Pulmão/microbiologia , Pulmão/fisiologia , Linfopenia/genética , Masculino , Pneumonia por Pneumocystis/genética , Coelhos , Imunodeficiência Combinada Severa/genética
17.
Front Immunol ; 8: 661, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28638383

RESUMO

Acute alcohol exposure suppresses cell inflammatory response. The underlying mechanism has not been fully defined. Here we report that alcohol was able to activate glucocorticoid receptor (GR) signaling in the absence of glucocorticoids (GCs) and upregulated glucocorticoid-induced leucine zipper (gilz), a prominent GC-responsive gene. Such a non-canonical activation of GR was not blocked by mifepristone, a potent GC competitor. The proximal promoter of gilz, encompassing five GC-responsive elements (GREs), was incorporated and tested in a luciferase reporter system. Deletion and/or mutation of the GREs abrogated the promoter responsiveness to alcohol. Thus, the GR-GRE interaction transduced the alcohol action on gilz. Alcohol induced GR nuclear translocation, which was enhanced by the alcohol dehydrogenase inhibitor fomepizole, suggesting that it was alcohol, not its metabolites, that engendered the effect. Gel mobility shift assay showed that unliganded GR was able to bind GREs and such interaction withstood clinically relevant levels of alcohol. GR knockout via CRISPR/Cas9 gene targeting or GILZ depletion via small RNA interference diminished alcohol suppression of cell inflammatory response to LPS. Thus, a previously unrecognized, non-canonical GR activation of gilz is involved in alcohol modulation of cell immune response.

18.
Steroids ; 119: 18-30, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28089927

RESUMO

Analogs of 1α,25-dihydroxyvitamin D3 (S1) with 20-epi modification (20-epi analogs) possess unique biological properties. We previously reported that 1α,25-dihydroxy-20-epi-vitamin D3 (S2), the basic 20-epi analog is metabolized into less polar metabolites (LPMs) in rat osteosarcoma cells (UMR-106) but not in a perfused rat kidney. Furthermore, we also noted that only selective 20-epi analogs are metabolized into LPMs. For example, 1α,25-dihydroxy-16-ene-20-epi-vitamin D3 (S4), but not 1α,25-dihydroxy-16-ene-23-yne-20-epi-vitamin D3 (S5) is metabolized into LPMs. In spite of these novel findings, the unequivocal identification of LPMs has not been achieved to date. We report here on a thorough investigation of the metabolism of S4 in UMR-106 cells and isolated two major LPMs produced directly from the substrate S4 itself and two minor LPMs produced from 3-epi-S4, a metabolite of S4 produced through C-3 epimerization pathway. Using GC/MS, ESI-MS and 1H NMR analysis, we identified all the four LPMs of S4 as 25-hydroxy-16-ene-20-epi-vitamin D3-1-stearate and 25-hydroxy-16-ene-20-epi-vitamin D3-1-oleate and their respective C-3 epimers. We report here for the first time the elucidation of a novel pathway of metabolism in UMR-106 cells in which both 1α,25(OH)2-16-ene-20-epi-D3 and 1α,25(OH)2-16-ene-20-epi-3-epi-D3 undergo C-1 esterification into stearic and oleic acid esters.


Assuntos
Colecalciferol/metabolismo , Animais , Calcitriol/química , Calcitriol/metabolismo , Linhagem Celular Tumoral , Colecalciferol/química , Ésteres/química , Ésteres/metabolismo , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Espectroscopia de Ressonância Magnética , Osteossarcoma/metabolismo , Ratos , Espectrometria de Massas por Ionização por Electrospray , Estereoisomerismo , Vitamina D/análogos & derivados , Vitamina D/química , Vitamina D/metabolismo
19.
Immunol Rev ; 273(1): 219-31, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27558337

RESUMO

Phagocytes, such as neutrophils and macrophages, engulf microbes into phagosomes and launch chemical attacks to kill and degrade them. Such a critical innate immune function necessitates ion participation. Chloride, the most abundant anion in the human body, is an indispensable constituent of the myeloperoxidase (MPO)-H2 O2 -halide system that produces the potent microbicide hypochlorous acid (HOCl). It also serves as a balancing ion to set membrane potentials, optimize cytosolic and phagosomal pH, and regulate phagosomal enzymatic activities. Deficient supply of this anion to or defective attainment of this anion by phagocytes is linked to innate immune defects. However, how phagocytes acquire chloride from their residing environment especially when they are deployed to epithelium-lined lumens, and how chloride is intracellularly transported to phagosomes remain largely unknown. This review article will provide an overview of chloride protein carriers, potential mechanisms for phagocytic chloride preservation and acquisition, intracellular chloride supply to phagosomes for oxidant production, and methods to measure chloride levels in phagocytes and their phagosomes.


Assuntos
Cloretos/metabolismo , Imunidade Inata , Neutrófilos/fisiologia , Peroxidase/metabolismo , Fagocitose , Animais , Transporte Biológico , Humanos , Concentração de Íons de Hidrogênio , Ácido Hipocloroso/metabolismo , Potenciais da Membrana , Fagossomos/metabolismo
20.
Alcohol ; 54: 73-7, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27522326

RESUMO

On September 27, 2015 the 20th annual Alcohol and Immunology Research Interest Group (AIRIG) meeting was held as a satellite symposium at the annual meeting of the Society for Leukocyte Biology in Raleigh, NC. The 2015 meeting focused broadly on adverse effects of alcohol and alcohol-use disorders in multiple organ systems. Divided into two plenary sessions, AIRIG opened with the topic of pulmonary inflammation as a result of alcohol consumption, which was followed by alcohol's effect on multiple organs, including the brain and liver. With presentations showing the diverse range of underlying pathology and mechanisms associated with multiple organs as a result of alcohol consumption, AIRIG emphasized the importance of continued alcohol research, as its detrimental consequences are not limited to one or even two organs, but rather extend to the entire host as a whole.


Assuntos
Etanol/efeitos adversos , Inflamação/induzido quimicamente , Animais , Humanos , Pulmão/efeitos dos fármacos , Pulmão/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA